
AFBV: A Scalable Packet Classification Algorithm
Ji Li, Haiyang Liu, Karen Sollins

MIT Laboratory for Computer Science
{jli, hyliu, sollins}@ mit.edu

http://web.mit.edu/jli/www/afbv

Packet classification is a central function of a
number of network activities, such as routing and
firewall management. The packet classifier has a
ordered rule database, one rule for each type of packets,
and all arriving packets are classified into equivalent
classes based on the first rule they match. With the
development of the Internet, the database size can only
grow with time. Consequently, scalability becomes an
important issue for packet classification algorithm.
This project is addressing the scalability problem in the
selection of rules for packet classification.

There is significant previous work in this area.
Much previous work executed in linear time with the
number of rules. Our work is an improvement on the
ABV scheme of Baboescu and Varghese [1], which in
turn is an improvement in the straightforward linear
Lucent bit vector scheme (BV) [2]. The BV scheme
produces bit vectors of all rules for each field, and
selects the rules applicable to the complete header by
first finding the bit vectors corresponding to each field,
then intersecting them, and the first set bit in the
consequent bit vector implies the position of the rule in
the database. ABV made two observations: first the set
bits in the bit vectors are sparse and second a packet
matches no more than a few rules. Hence, ABV
improves BV to achieve logarithmic time in two steps.
First, ABV rearranges the rules by sorting, so that those
rules that match specific prefixes are near each other in
the list. Second, it aggregates bits in each field to
reduce memory accesses, but increasing the possibility
of false matches. The rule rearrangement mitigates the
false matches to some extent, but also incurs additional
cost. First, rule rearrangement makes it necessary to
find all matches, instead of first match in BV. Second,
it is not easy to find an effective rearrangement method.
Third, rules need to be mapped back to the original
order so as to find the rule with the lowest order.

Our scheme, the Aggregated and Folded Bit Vector
algorithm (AFBV) inherits the idea of bit vector and
aggregation from BV and ABV, but discards rule
rearrangement and introduce a new concept: folding.
All bits in a predefined range r (r is called folding
range, usually equal to multiple aggregate sizes),
whose positions have the same mod-f value are OR-ed
together, the result occupying that position mod f, thus
folding the bit vector (f is called folding size). Only
when there are at least one bit set at the same mod-f
position can one get false matches, while in ABV, a
match among any bits within an aggregation group can

lead to a false match. Once there is a match in the
folded bit vector at position k (k is inclusively between
0 and f-1), the possible real match position must take
the form (I · f + k). Therefore, folding helps not only
filter out false matches but also locate the real match
positions. This scheme will also not produce any false
negatives (missing a match). Thus, correctness is
guaranteed.

Besides the folding range and the folding size, the
number of folding is another important parameter in
AFBV. By using multiple folding with different sizes,
we can enhance the detecting and locating ability of the
folded vectors. First, only if there are matches in all the
intersections of the folded vectors may there be real
matches in the original vectors. The gain here is that
mostly we do not need to fetch the whole original bit
vector to conclude a false match as required in BV and
ABV. Second, with proper selection on the folding
sizes, multiple folding greatly reduces the number of
the possible match positions than single folding. The
gain here is that in case of real matches, we only need
to fetch parts instead of the whole original bit vectors.

In addition to the aggregate bit vectors, AFBV needs
to store the folded bit vectors, which incurs about 10%
additional storage requirements, and could be even
smaller.

AFBV offers the following benefits: Only the first
matched rule need to be found; no mapping back cost is
needed; without rule rearrangement, pre-processing is
much simple; a large aggregate size can be applied
because the folded vectors reduce false matches.

In our simulations of relative performance we
compare the Lucent BV algorithm, the ABV algorithm
and our AFBV algorithm, and evaluate both
performance and space utilization. Preliminary results
on different-sized databases show that AFBV
outperforms ABF and BV on average, and can achieve
the similar level of performance in worst cases, with
about a 10% increase in memory requirements, for the
additional, folded vectors.

References:
1. F. Baboescu, G. Varghese. Scalable Packet

Classification. In Proc. ACM SIGCOMM’01,
Aug. 2001.

2. T. Lakshman and D. Stidialis. High speed policy-
based packet forwarding using efficient multi-
dimensional range matching. In Proc. ACM
SIGCOMM’98, Sept. 1998.

